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trapezoid - solution 
 
This is a dynamic programming task, with the fruitful use of well-known data structures. There 
are various possible approaches with time and memory complexities O (n2), O (n log2 n) and O (n 
log n). 
 
Every trapezoid is represented by two intervals (one on each horizontal line). We can normalize 
the coordinates, and get the permutation from 1 to 2n. This can be easily done by sorting the 
arrays a and b (and c and d) in O (n log n) time, with two additional arrays.  
 
We could make things easier by introducing two dummy trapezoids, one on the left and one on 
the right side with large coordinates.  
 
Next, we will calculate the size of the maximum independent set. We can define partial ordering 
by sorting the trapezoids according to the upper left corner a (i). Let max_ind (i) denote the size 
of the maximum independent set of trapezoids T(1), T(2), …, T(i-1) that contain trapezoid T(i). It 
simply follows: 
 

max_ind (i) = max {1 + max_ind (k)},  
          where 1 ≤ k ≤ i and T (k) lies completely on the left of T (i) 

 
This produces O (n2) dynamic programming algorithm.  
 
In order to get O (n log n) solution, we will use a binary indexed tree (cumulative table) data 
structure. Cumulative tables in logarithmic time perform three operations on the array x: 

- for given index k and number m, add m to the value x (k) 
- for given index k, calculate the partial sum x (1) + x (2) + … + x (k) 
- for given index k, calculate the maximum value among x (1), x (2), …, x (k). 
 

Let cum_max be the cumulative table for maintaining the partial maximums. Traverse the 
coordinates from 1 to 2n, and for each left upper coordinate a (i) calculate max_ind (i) based on 
the maximum value among cum_max (1), cum_max (2), …, cum_max (c (i)), while for the right 
upper coordinate b (i) write max_ind (i) in the cumulative table on the index d (i). The final 
solution is max_ind (n + 1). 
 
The second part is more difficult. The quadratic dynamic programming solution is given in the 
following pseudo code: 
 
num_max_ind (0) = 1; 
for i = 1 to n do begin 
 num_max_ind (i) = 0; 
 for j = 0 to i – 1 do begin 
  if ((max_ind (j) + 1 == max_ind (i)) and (a (j) > b (i)) and (c (j) > d (i)) then 
   num_max_ind (i) = num_max_ind (i) + num_max_ind (j); 
 end; 
end; 
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We will use again cumulative tables for the designing O (n log n) solution. The main problem 
here is how to manipulate the partial sums. Namely, for each trapezoid T(i), we need to sum the 
values num_max_ind (j) of those trapezoids T(j) which are entirely on the left of T(i) with 
additional condition max_ind (j) + 1 = max_ind (i).  
 
This can be done by considering pairs (k, k + 1) of two neighboring values 1 ≤ k ≤ max_ind (n + 
1). Using two additional arrays for coordinates and trapezoid indices, we can traverse trapezoids 
T (i) from left to right, such that max_ind (i) = k or max_ind (i) = k + 1. First, we need to carefully 
preprocess all trapezoids and store the coordinates for each pair (k, k + 1) in one array (or array of 
dynamic arrays) in order to keep memory limit O (n). Therefore, we fill the cumulative table with 
the values for trapezoids with max_ind (i) = k,and calculate the value num_max_ind (i) for 
trapezoids with max_ind (i) = k+1. Instead of resetting the cumulative table for each k, we can 
remove the values by another traversing the array of indices.  
 
Since every trapezoid will be added and removed from the cumulative table, the total time 
complexity is O (n log n). This reusing of the cumulative table makes this task very interesting. 
 
 

 


